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ABSTRACT

Biofuels are attracting increasing attention worldwide due to its environ-

mental and economic benefits. The high levels of uncertainty in feedstock yield,

market prices, production costs, and many other parameters are among the ma-

jor challenges in this industry. This challenge has created an ongoing interest

on studies considering different aspects of uncertainty in investment decisions

of the biofuel industry.

The Renewable Fuel Standard (RFS) sets policies and mandates to support

the production and consumption of biofuels. However, the uncertainty associ-

ated with these policies and regulations of biofuel production and consumption

have significant impacts on the biofuel supply chain network.

The goal of this research is first to determine the optimal design of supply

chain for biofuel refineries in order to maximize the annual profit considering

uncertainties in fuel market price, feedstock yield and logistic costs. In order to

deal with the stochastic nature of the parameters in the biofuel supply chain, we

develop two-stage stochastic programming models in which Conditional Value

at Risk (CVaR) is utilized as a risk measure to control the amount of shortage

in demand zones. Two different approaches including the expected value and

CVaR of the profit are considered as the objective function.

This study also aims to investigate the impacts of the governmental policies

and mandates on the total profit in the biofuel supply chain design problem. To

achieve this goal, the two-stage stochastic programming models are developed

in which conditional value at risk is considered as a risk measure to control the

shortage of mandate.

We apply these models for a case study of the biomass supply chain net-
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work in the state of Iowa to demonstrate the applicability and efficiency of the

presented models, and assess the results.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

There is a growing interest in the use of biomass as an important source

of energy in the world. Biomass currently accounts for roughly 10% of the

total primary energy consumption [15]. Biofuel is referred to as fuels for the

transport sector produced from biomass which can be used as a substitute for

petroleum fuels. [11]. The reasons to promote the biofuel production include

energy security reasons, environmental concerns, foreign exchange savings, and

socioeconomic benefits for the rural development [12].

There are several advantages for developing biofuels: biofuels have potential

to reduce dependency on fossil fuel; they are easily available from common

biomass sources; biofuels have a considerable environmentally friendly potential;

they promote rural development in agricultural regions; they are biodegradable

and contribute to sustainability. In summary, biofuel production provides many

benefits the environment, economy and consumers [15, 33, 11].

One of the most important aspects of biofuel production planning is the

design of biomass supply chain networks. However, the biofuel industry has

been challenged by the significant uncertainties along the biofuel supply chain

such as the available feedstock supply, logistic costs and consumer demands.

Therefore, it is of great importance to consider the impacts of uncertainties to

the biofuel supply chain network design.

The government regulations and policies affect the production and use of

biofuel across the biofuel supply chain. These policies are necessary to success-
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fully deploy biofuel production since the production of biofuels is often more

expensive than the production of conventional fuels [15, 33]. Biofuel industry

is highly affected by the policies and regulations. In this study, the impacts of

policies on the biofuel supply chain network design are investigated.

The proposed mathematical modeling framework aims to design a biore-

finery supply chain considering uncertainties in fuel market price, feedstock

supply, and logistic costs including transportation and operation costs. Mixed

integer programming models with a two-stage stochastic programming approach

were applied to address the uncertainties. The first-stage makes the capital in-

vestment decisions including the locations and capacities of the biorefineries.

Once the first-stage decisions are determined, the second-stage determines the

biomass and gasoline flows. The objective function is to maximize the annual

profit. Two different types of objectives were considered: expected value of

profit, E(Profit), and conditional value at risk of profit, CVaR(Profit). The pro-

posed models also illustrate the impacts of incorporating CVaR in constraints

on satisfying biofuel demand or mandate and controlling the amount of short-

age in demand zones. The impacts of the changes in policies and mandates on

the proposed models are discussed.

1.2 Thesis Structure

Chapters 2 and 3 correspond to the research goals outlined above. In chap-

ter 2, we develop the mathematical models with the approach of two-stage

stochastic programming to design a biorefinery supply chain considering uncer-

tainties in the fuel market price, feedstock supply, and logistic costs. Chapter

3 is devoted to the evaluation of the impacts of biofuel policies such as man-

date and pass-through on the biofuel supply chain design. Finally, Chapter 4

summarizes the conclusions drawn from the thesis and plans for future work in

this area.
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CHAPTER 2. OPTIMIZATION MODELS FOR

BIOREFINERY SUPPLY CHAIN NETWORK DESIGN

UNDER UNCERTAINTY

Narges Kazemzadeh1 and Guiping Hu2

Department of Industrial and Manufacturing Systems Engineering, Iowa State

University, Ames, IA 50011, USA

Abstract

Biofuel industry has attracted much attention due to its potential to reduce

dependency on fossil fuels and contribute to the renewable energy. The high

levels of uncertainty in feedstock yield, market prices, production costs, and

many other parameters are among the major challenges in this industry. This

challenge has created an ongoing interest on studies considering different aspects

of uncertainty in investment decisions of the biofuel industry.

This study aims to determine the optimal design of supply chain for bio-

fuel refineries in order to maximize annual profit considering uncertainties in

fuel market price, feedstock yield and logistic costs. In order to deal with

the stochastic nature of parameters in the biofuel supply chain, we develop

two-stage stochastic programming models in which Conditional Value at Risk

(CVaR) is utilized as a risk measure to control the amount of shortage in de-

mand zones. Two different approaches including the expected value and CVaR

1kazemzad@iastate.edu
2gphu@iastate.edu
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of the profit are considered as the objective function. We apply these models

and compare the results for a case study of the biomass supply chain network in

the state of Iowa to demonstrate the applicability and efficiency of the presented

models.

keywords

supply chain management, biorefinery , stochastic programming , biofuel ,

CVaR

2.1 Introduction

Biofuel, as an important source of energy, has created increasing interest

in the past few years due to its environmental and economic benefits. One

of the most significant advantages of biofuel is its potential to reduce depen-

dency on fossil fuel. Moreover, second generation biofuel provides the benefit

of avoiding competition with food production and promotes rural development

in agricultural regions by using lignocellulosic biomass as feedstock [15].

U.S. Environmental Protection Agency (EPA) regulations affect the pro-

duction and use of biofuel across the biofuel supply chain. EPA has proposed

rules in a revised Renewable Fuel Standard (RFS-2) that govern how biofuels

are produced and used in the U.S. RFS-2 has set a goal of producing 36 billion

gallons of biofuels in 2022 as shown in Figure 2.1.

One of the most important aspects of biofuel production planning is the

design of biomass supply chain networks. Thus far, numerous studies have

been conducted on supply chain design of biorefineries [16, 42, 28]. However,

the biofuel industry has been challenged by the significant uncertainties along

the biofuel supply chain such as the available feedstock supply, logistic costs

and consumer demands. Therefore, it is of great importance to consider the

impacts of uncertainties to the biofuel supply chain network design.
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Figure 2.1 Renewable Fuel Standards (RFS-2) goal (Source: EPA, EIA)

There is a rich literature on supply chain design. An et al. [3] reviewed

previous research on biofuel and petroleum-based fuel supply chain. Shah [38]

discussed the advantages and challenges of the process industry supply chain

optimization. The author reviewed the studies in infrastructure design, mod-

eling, analysis, planning, and scheduling together with some industrial exam-

ples. Bowling et al. [7] present an optimization model with the objective of

maximizing net profit considering overall sales and the costs for the feedstock,

transportation costs, capital costs for the facilities, and the operational costs

for the facilities. The objective was to maximize net profit considering overall

sales and the costs for the feedstock, transportation costs, capital costs for the

facilities, and the operational costs for the facilities. Eksioglu et al. [16] pro-

posed a mathematical model to design the supply chain of biorefineries needed

to produce biofuel. The model determines the number, sizes and locations of

the biorefineries. The authors applied the model for the state of Mississippi

in a case study. Gan [17] developed an analytical framework for supply of

biomass considering feedstock production, energy conversion, and environmen-

tal benefits/costs to minimizes the total cost of both feedstock and electricity

production and determine the optimal power plant size. In [41], the authors

used GIS to determine the optimal locations, sizes and number of bio-energy

facilities in Alberta, Canada while optimizing the transportation cost. An in-
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tegrated mathematical model to determine the optimal comprehensive supply

chain/logistics decisions to minimize the total cost is proposed by Zhang et al.

[46] They showed the application of this model with a case study in the state of

North Dakota. Vera et al. [43] developed a framework for finding the optimum

location and capacity of a power plant fed with residues from olive oil producing

areas.

An optimization model for the strategic design of a hybrid first/second gen-

eration ethanol supply chain is developed by Akgul et al. [1]. This model ad-

dresses sustainability issues such as the use of food crops, land use requirements

of second generation crops, and competition for biomass with other sectors.

They considered bioethanol production in the UK using hybrid first/second

generation technologies as the case study. In another work, they proposed a

multi-objective optimization model of hybrid first/second generation biofuel

supply chains to analyze the trade-off between the economic and environmental

objectives as well as the impact of carbon tax on the economic and environ-

mental performance of the biofuel supply chain. The authors demonstrated the

applicability of the model with a case study of bioethanol production in the UK

[2]. Kim et al. [27] developed a mixed integer linear programming model to

determine the fuel conversion technologies, capacities, biomass locations, and

the logistics of transportation from the locations of forestry resources to the

conversion sites and then to the markets. The authors used the model to ana-

lyze the supply chain systems and particularly to verify which parameters have

major impacts on the overall economic outlook. The benefit of converting to a

more distributed type of processing network has been analyzed, in terms of the

overall economics and the robustness to demand variations. Judd et al. con-

sider the impact of biomass crop yield, harvest method, and economies of scale

in biorenery capacities on the total cost [23]. The problem of finding the best

location for a biorefinery plant considering the local availability of biomass and
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geographical distribution of customers has been studied by Leduc et al. [29].

A number of studies considered dynamic models planning over multiple pe-

riods. Huang et al. [22] proposed a mathematical model that integrates spatial

and temporal dimensions for strategic planning of future bioethanol supply

chain systems. The planning objective was to minimize the cost of the entire

supply chain of biofuel from biowaste feedstock fields to end-users over the entire

planning horizon, simultaneously satisfying demand, resource, and technology

constraints. As a case study, the authors applied the model to investigate the

economic potential and infrastructure requirements for bioethanol production

from eight waste biomass resources in California. Sokhansanj et al. [40] de-

veloped a dynamic integrated biomass supply analysis and logistics model to

simulate the collection, storage, and transport operations of supplying agricul-

tural biomass to a biorefinery. A dynamic nonlinear mixed integer programming

model is developed by Shabani and Sowlati [37] to maximize the overall value

of the supply chain of forest biomass.

The majority of the literature on biofuel supply chain design assumes all the

parameters in the system are known a priori. In biofuel supply chain, however,

there is a high level of uncertainty that can be encountered in practice. Hence,

it is important to develop approaches to deal with the uncertainties associated

with the biofuel supply chain design [19, 36].

A number of recent studies in this field have considered the uncertainties

associated with the supply chain. Awudu and Zhang [4] discussed uncertainties

in biofuel supply chain management and reviewed related works. A dynamic

mixed integer linear programming for strategic design and planning of a sup-

ply chain in a period of 10 years was developed by Dal-Mas et al. [8] while

considering uncertainty on biomass production cost and product selling price.

The objective of their model was to minimize the expected net present value

related to each scenario deriving from the combination of corn purchase costs
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and fuel ethanol market price. This model was used for the corn-to-ethanol

production supply chain in Northern Italy as a test case. Sodhi and Tang [39]

introduced a two-stage stochastic model for supply chain management under

uncertainty by applying a Stochastic Mixed Integer Non-linear Method. Deci-

sions such as the production topology, plant sizing, product selection, product

allocation are considered. Kim et al. [26] proposed a two-stage mixed inte-

ger stochastic model to determine the size and location of the biorefineries.

To design the problem in a manageable size, they considered only the bounds

of the parameters. Marvin et al. [30] considered a mixed integer linear pro-

gramming to determine optimal locations and capacities of biorefineries with

biomass harvest and distribution. They also performed sensitivity analysis to

verify the impact of price uncertainty on the decisions. Giarola et al. [18]

general mixed integer linear programming modelling framework is developed to

assess the design and planning of a multiperiod and multi-echelon bioethanol

upstream supply chain under market uncertainty considering economic and en-

vironmental (global warming potential) performance. Awudu and Zhang [5]

proposed a stochastic linear programming model for a biofuel supply chain un-

der demand and price uncertainties within a single-period planning framework

to maximize the expected profit. The decisions are to determine the amount

of raw materials purchased, the amount of raw materials consumed and the

amount of products produced. A simulation model is another useful tool for

supply chain management in biofuel industry due to the complexity and degree

of uncertainty in such problems [20, 24, 32, 40, 45].

While it has been demonstrated that biofuel industry is more vulnerable to

risk compared to many other industries [3], there are only a few studies dealing

with the uncertainty in the biofuel supply chain design. The literature reviewed

in this paper considered the uncertain parameters while maximizing the profit

or minimizing the costs. One of the challenges, however, is to quantify the
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adverse impact of the uncertain parameters on demands satisfaction as well as

the economic objectives. Feedstock supply is a main source of uncertainty in

the biofuel supply chain, because it is highly dependent on the weather and

can be negatively affected by pests or diseases. For instance, fluctuation of

feedstock supply has a large impact on the level of satisfied biofuel demands.

As a consequence, the system may not be able to meet all the demands, or there

might be excesses of the supply. In addition, the uncertainty on the selling price

of the biofuel, and logistic costs including transportation and operation costs

related to the feedstock preparation at the field will directly impact the supply

chain system.

In this study, we aim to develop a mathematical modeling framework to

design a biorefinery supply chain considering uncertainties in fuel market price,

feedstock supply, and logistic costs including transportation and operation

costs. Mixed integer programming models with a two-stage stochastic pro-

gramming approach were applied to address the uncertainties. The first-stage

makes the capital investment decisions including the locations and capacities

of the biorefineries. Once the first-stage decisions are determined, the second-

stage determines the biomass and gasoline flows. The objective function is to

maximize the annual profit which is revenue minus costs. Two different types of

objectives were considered: expected value of profit, E(Profit), and conditional

value at risk of profit, CVaR(Profit). The proposed models also illustrate the

impact of incorporating CVaR in constraints on satisfying demand and control-

ling the amount of shortage in demand zones.

The rest of the paper is organized as follows: in Section 2.2, the problem

statement for biofuel supply chain is presented. Then, we discuss the stochastic

programming models for this problem in Section 2.3. In order to highlight the

efficiency and applicability of the presented models, a case study in the state

of Iowa and the results are presented in Section 2.4. Finally, we conclude the
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paper in Section 2.5 with summary of findings.

2.2 Problem Statement

The goal of this study is to develop a mathematical modeling framework to

design a supply chain network for biofuel considering uncertainty in the system.

The biofuel supply chain network consists of biomass production, harvesting,

transportation, conversion and fuel distribution. Figure 2.2 shows a schematic

structure of the biofuel supply chain. In order to design the supply chain net-

work, we developed two optimization models with different objective functions.

These models determine the best locations of the biorefineries to maximize the

profit while reducing the risk of biofuel shortages in demand centers. They also

specify the amount of biomass transported from harvesting sites to biorefineries

as well as the amount of gasoline shipped to the demand nodes.

Figure 2.2 Structure of the biofuel supply chain

The parameters used in the problem are defined as follows:

• Set of biomass feedstock harvesting sites;

• Feedstock availability at each harvesting site with the potential fluctuation

of yield due to seasonality and weather conditions;

• Sustainability factor for each feedstock harvesting site;

• Feedstock collection and loading cost with a known probability distribu-

tion;
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• Feedstock transportation cost with a known probability distribution;

• The distance between nodes of the supply chain network based on great

circle distance;

• Set of potential biorefineries locations along with the possible set of ca-

pacity levels of each one;

• Set of demand zones with the amount of associated demand; and

• Biofuel transportation costs.

Several assumptions are made in the presented models. We assume that the

feedstock supply and the logistic costs (including transportation, collection,

and loading costs) are uncertain due to high impacts of these parameters on

the efficiency of the network [10]. In these models, each biorefinery can be

provided by more than one feedstock harvesting site, and each demand can be

satisfied by more than one biorefinery. In addition, each harvesting site can

serve more than one biorefinery and also each biorefinery can supply more than

one demand zone.

The models in this paper are developed to design a biofuel supply chain

network to maximize the profit and minimize the costs while controlling the

biofuel shortage in demand centers. The objective function of the models is

to maximize the total profit (revenue from selling biofuel deducted by total

cost including collecting, transporting, and operational costs). The aim is to

determine the locations and capacities of biorefineries, and the quantities of

biomass feedstock shipped between harvesting sites and biorefineries, as well as

the quantities of biofuel transported between biorefineries and demand zones.

2.3 Model Formulation

We formulate two stochastic programming models to maximize the profit

in a biofuel supply chain network. The uncertainties in the models are defined
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with a set of uncertain parameters described by discrete distributions. Sce-

narios are generated based on the combination of the uncertain parameters.

A two-stage stochastic programming approach was incorporated to investigate

the decision making under the uncertainties. The fundamental idea behind two-

stage stochastic programming is the concept of recourse, which is the ability to

take corrective action after a realization of a scenario. The first-stage decisions

involve variables that have to be decided before the actual value of uncertain-

ties are realized. After the first-stage, the uncertainties are revealed, and the

decision maker must choose an action that optimizes the objectives according

to the realization of the scenario. In this problem, the first-stage decision is for

the capital investment including the locations and capacities of the biorefineries.

The second-stage variables are those that can be determined after the realiza-

tion of the uncertain parameters. Once the uncertainties of available feedstock

is resolved, the second-stage decisions are made, which include the flows of the

biomass from harvesting sites to biorefineries and the flows of biofuel to demand

zones.

We adopt the concept of Conditional value at Risk (CVaR) in the second

objective function and in the constraints as a risk measure to incorporate the

uncertainties design setting. As a consequence of uncertainties, there may be

biofuel shortage for the demand zones. However, it is not desirable to have a

large amount of shortage in a single demand node. Hence, CVaR is employed

as a risk measure to control the shortage in each demand zone. The concept of

CVaR is also employed in the objective function formulation. Uncertainties in

biofuel market price and logistic costs are considered. We consider two different

types of objectives: expected value of profit, E(Profit), and conditional value

at risk of profit, CVaR(Profit). In the remainder of this section, we will first

explain the concept of CVaR for the loss distribution and the profit distribution.

Then, we will elucidate the constraints in the models, and finally, the objective
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functions applied in the models are discussed.

2.3.1 Value at Risk and Conditional Value at Risk

A common way to incorporate risk-aversion concept into an optimization

model is the use of Value at Risk (VaR) constraints. VaR is a popular measure

for its comprehensibility, however, because of the conceptual and computational

limitations, it is preferred to use Conditional Value at Risk (CVaR) constraints

[6, 34, 35].

In this study, we used CVaR constraints to model the risk and uncertainty

for the demand shortage. In the definition of VaR and CVaR of a loss function,

usually the tail on the right side of a probability density function is considered,

so in this problem we also use the definition of CVaR for the tail on the right

side of a probability density function of fuel demand shortage.

The VaR1−α of a random variable of X is the lowest value of t such that,

with probability α, the loss will not be more than t, whereas the CVaR1−α is

the conditional expectation of loss above that amount t [35], that is

VaR1−α(X) = inf {t : Pr(X ≤ t) ≥ 1− α} ,

CVaR1−α(X) = E[X|X ≥ V aR1−α].

Figure 2.3 depicts the concept of VaR and CVaR of loss or shortage as-

sociated with α percentile for a continuous distribution. Since the stochastic

parameters in this study are assumed to be discrete distributed, the demand

shortages are defined in a discrete distribution as well. Another representation

of CVaR(1−α) for a discrete distribution is

CVaR1−α(X) = inf
t

{
t+

1

α
E [(X − t)+]

}
(2.1)
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where (a)+ = max {0, a} [13].

Figure 2.3 CVar of shortage

In the biofuel supply chain design, CVaR of loss (fuel demand shortage

in this study) is chosen as a criterion to control the risk of fuel shortage in

demand areas. A constraint which limit the upper bound of the CVaR of

demand shortage is incorporated in the model.

Although CVaR is typically defined for an adverse distribution in literature

of finance, it can be defined for a favorable distribution such as the distribution

of profit. In this study, CVaR is also utilized to incorporate the uncertainty for

the profit. For a distribution of the profit, the definition of VaR and CVaR is

considered for the tail on the left side of a probability density function.

The VaR1−β of a random variable of X is the highest value of t such that,

with probability β, the profit will not be less than t, whereas the CVaR1−β is

the conditional expectation of profit below that amount t, as follows

VaR1−β(X) = sup {t : Pr(X ≥ t) ≥ 1− β} ,

CVaR1−β(X) = E[X|X ≤ V aR1−β].

Figure 2.4 shows VaR and CVaR of profit associated with β percentile. For

a discrete distribution, another representation of CVaR(1−β) is

CVaR1−β(X) = sup
t

{
t− 1

β
E [(t−X)+]

}
. (2.2)
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Figure 2.4 CVar of profit

2.3.2 Constraints in the Model

In this section, we present a two-stage stochastic programming formula-

tion for biofuel supply chain network design where locations for biorefineries

are assumed to be centroid of the counties and demand nodes are based on

Metropolitan Statistical Areas (MSAs). We assume that the available feed-

stock, the price, collection and loading costs, and biomass transportation costs

have discrete distribution. Table 2.1 describes the notations used in the model.

The first-stage constraints of the model enforce the selection of biorefinery

locations. A set of binary variables, δlj , is defined to determine whether a

biorefinery with capacity level of l is located in a candidate location j. To

ensure that the cost of building biorefieries does not exceed the available budget

B, the following constraint is used:

∑
j

∑
l

CBl δlj ≤ B. (2.3)

In each candidate location, only one biorefinery can be built, which is spec-

ified by the following constraints:

∑
l

δlj ≤ 1, ∀j ∈ N. (2.4)

The rest of the constraints refer to the second-stage decisions which specify

the amount of feedstock and biofuel flows among the nodes of the supply chain
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Table 2.1 Notations
Scenarios

ws Probability that scenario s happens;

S Set of scenarios;

Feedstock Parameters

N Set of counties producing biomass feedstock;

Ais Available feedstock at county i in scenario s;

Si Sustainability factor for county i

CSCis Variable feedstock collection and loading cost at county i in scenario s;

Transportation Parameters

e Material loss factor;

Dij Great circle distance from county i to county j;

τ Tortuosity factor;

CSTs Variable feedstock transportation cost in scenario s;

Biorefinery Parameters

L Set of biorefinery levels;

Ulj Biorefinery capacity with level l for location j;

Y Biorefinery fuel process yield;

CGC Unit conversion cost per gallon of biofuel produced;

B Available budget;

CBl Cost of opening a biorefinery with level l;

MSA and Gasoline demand

M Set of MSAs considered;

Gk Total gasoline demand for MSA k;

CGT Variable gasoline transportation cost;

Pks Price of gasoline at MSA k for scenario s;

shks Shortage of gasoline demanded at MSA k in scenario s;

H Upper bound for CVaR of shortage in each MSA;

Optimization Variables

δlj Binary variable that determines if a biorefinery with capacity l is located in county j;

fijs Flow of biomass feedstock from county i to county j for refining in scenario s;

qjks Finished gasoline flow from county j to MSA k in scenario s;

η, rs Variables defined to formulate CVaR of the shortage.
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network based on which scenario happens considering supplies and demands,

respectively.

In our models, the biomass supply is assumed to be uncertain with a known

distribution from which we take samples, called scenarios and represented by S.

Given the set of counties, N , that produce biomass feedstock, each county i ∈ N

has Ais tons per year of corn stover in scenario s available. A sustainability

factor of the corn stover, Si, must remain in the field to provide winter cover

and prevent soil erosion. Therefore, each county can provide at most (1−Si)Ais

tons of corn stover per year in scenario s.

It is assumed that transport distances within one county are negligible in

feedstock transportation costs. Each county, j ∈ N , can be a candidate for

a biorefinery facility with the capacity of Uj . The flow of the feedstock from

biorefinery i to the biorefinery facility j in scenario s is denoted by fijs. The

total quantity of feedstock transported from county i can not exceed the amount

of feedstock available at the county in each scenario, which is satisfied by

∑
j

fijs ≤ (1− Si)Ais, ∀i ∈ N, ∀s ∈ S. (2.5)

Capacity constraints are also incorporated in the model. The total flow of

feedstock into the biorefinery facility is
∑N

i fijs. The material loss factor ej ∈

[0, 1) accounts for possible losses during loading, transportation, and unloading.

And ej ∈ [0, 1) is feedstock dependent. Therefore, the amount of feedstock that

can be processed to biofuel at a facility is less than or equal to the capacity,

Ulj , in county j in each scenario, which is denoted by

(1− ej)
∑
i

fijs ≤
∑
l

Uljδlj , ∀j ∈ N, ∀s ∈ S. (2.6)

The biorefineries convert the biomass feedstock into biofuel which will be

shipped to the MSAs. Decision variable qjks represents the quantity of biofuel
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shipped from biorefiery j to the MSA k under the scenario s. In a scenario

s, biofuel shipped from biorefieries to a certain MSA k may not satisfy its

demand(Gk). The shortage is represented by shks, as shown in constraint (7):

∑
j

qjks + shks = Gk, ∀k ∈M, ∀s ∈ S. (2.7)

It is assumed that all the biomass shipped to a biorefinery are converted to

biofuel, where Y is a conversion factor associated to the production yield. This

is represented by

(1− ej)
∑
i

fijsY =
∑
k

qjks, ∀j ∈ N, ∀s ∈ S. (2.8)

As discussed earlier, the feedstock available to convert to biofuel may not be

enough to satisfy all the demands, therefore, there may be shortages in MSAs.

To manage the amount of shortages in demand zones, CVaR is employed as a

risk measure. The decision makers have the flexibility to determine the limits on

the CVaR of shortage which is denoted by H. Based on the definition of CVaR

for a discrete distribution, to enforce a limit on CVaR of shortage associated

with α-quantile, i.e. CVaR1−α(sh) ≤ H, constraints (9)-(11)are included:

η +
1

α

∑
s

wsrs ≤ H, (2.9)

rs ≥ shks − η, ∀k ∈M, ∀s ∈ S, (2.10)

rs ≥ 0, ∀s ∈ S. (2.11)

Note that these constraints are based on linearization of (2.1) by introducing

auxiliary variables rs and η.

According to constraints (2.3), we can derive valid inequalities formulated

as the following:
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∑
j

δlj ≤ bB/CBl c, ∀l ∈ L. (2.12)

As these constraints make the feasible region tighter, this will facilitate problem

solution process, making it more efficiently. This is employed in the case study

section.

2.3.3 Objective Function

The objective of the models is to maximize the profit which is defined as

the revenue from selling the biofuel subtracted by the total cost. Various types

of costs are incurred in the biofuel supply chain network. The first one is the

unit cost of collection and loading of feedstock shipped and delivered to the

biorefiery facilities, which is denoted by CSCis . The other one is CSTs which

refers to the unit transportation cost for biomass feedstock. The collection

and loading cost and transportation cost are highly dependent on the eco-

nomic/market conditions, and thus CSCis and CSTs are based on the expected

value of the costs. Assuming the distance between county i and j as Dij , the

total expected cost of loading, collection, and transportation of biomass feed-

stock is
∑

s(C
SC
is + τDijC

ST
s )wsfijs. Here τ is a tortuosity factor that accounts

for the actual distance that must be traveled due to the available geography

and transportation infrastructure.

CGC is a unit conversion cost to produce a gallon of biofuel at the biorefinery.

The total conversion cost is thus
∑

j,k,sC
GCwsqjks. Biofuel is shipped to the

MSA by pipelines at a unit cost of CGT , so the total biofuel transportation cost

equals
∑

j,k,sDjkC
GTwsqjks.

Total capital cost to build the biorefineries is
∑

l,j C
B
l δlj . We adopt the

amortized capital investment concept. Therefore, the annual payments for a

period of t = 30 years with interest rate of ir = 8% is:
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PMT(Investment) = Investment

(
ir(1 + ir)t

(1 + ir)t − 1

)
To compute the profit, we need to calculate the revenue. The expected price

biofuel sold at in MSA k is denoted by Pk. Therefore, the total revenue obtained

by selling the product is
∑

j,k,s Pkwsqjks. The total profit can be defined as the

total revenue subtracted by the total costs.

To maximize the total profit, two modeling approaches are considered. The

first is to maximize the expected value of the total profit which is referred to

as E(Profit) in the rest of the paper. The model with objective of E(Profit) is

formulated as follows:

max
∑
j,k,s

Pkswsqjks −
∑
i,j,s

(CSCis + τDijC
ST
s )wsfijs −

∑
j,k,s

(CGC +DjkC
GT )wsqjks

− PMT(
∑
l,j

CBl δlj)

s.t. Constraints (2.3)− (2.11),

fijs ≥ 0, ∀i, j ∈ N, ∀s ∈ S,

qjks ≥ 0, ∀k ∈M, ∀s ∈ S,

shks ≥ 0, ∀k ∈M, ∀s ∈ S,

δlj ∈ {0, 1}, ∀j ∈ N, ∀l ∈ L.

It should be noted that risks associated with profit are not explicitly consid-

ered in the first approach with objective of E(Profit). Therefore, in the second

approach, we adopt the CVaR of profit for objective function to maximize the

profit in the cases of unfavorable scenarios.

The goal of the second approach is to maximize the CVaR of the total profit

which is referred to as CVaR(Profit) in the rest of the paper. In other word,
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the objective function can be viewed as maximization of the expected value of

β-percentile of the worst case of the total profit. The notation related to the

new assumptions are updated in Table 2.2. Variables ζ and vs are applied to

formulate and linearize CVaR of the profit according to the definition of CVaR

for the discrete distribution.

Table 2.2 Updated parameters for the stochastic model with objective of CVaR(Profit)

Profits Total profit for scenario s;

Revenues Revenue for scenario s;

Costs Total cost for scenario s;

ζ, vs Variables defined to formulate CVaR of the profit.

The model with the objective of CVaR(Profit) associated with β-percentile

is formulated as follows. The objective function used in this model is a lin-

earization of (2.2) by introducing auxiliary variables vs and ζ.
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max ζ − 1

β

∑
s

wsvs

s.t. vs ≥ ζ − Profits, ∀s ∈ S,

vs ≥ 0, ∀s ∈ S,

Profits = Revenues − Costs, ∀s ∈ S,

Revenues =
∑
k,j

Pksqjks, ∀s ∈ S,

Costs =
∑
i,j

(CSCis + τDijC
ST
s )fijs +

∑
j,k

(CGC +DjkC
GT )qjks

+ PMT(
∑
l,j

CBl δlj), ∀s ∈ S,

Constraints (2.3)− (2.11),

fijs ≥ 0, ∀i, j ∈ N, ∀s ∈ S,

qjks ≥ 0, ∀k ∈M, ∀s ∈ S,

shks ≥ 0, ∀k ∈M, ∀s ∈ S,

δlj ∈ {0, 1}, ∀j ∈ N, ∀l ∈ L.

2.4 Case Study

The stochastic mixed integer linear models proposed in this study are aimed

to design a biorefinery supply chain with the consideration of uncertainties. The

problem is formulated in two mathematical models with two different objective

functions: E(Profit) and CVaR(Profit). The models consider the uncertainties

in the fuel market price, feedstock supply, and logistic costs. A novelty in the

proposed models is to consider the control of the shortage of biofuel for demand

zones based on the CVaR of shortage.

In this case study, we examine the supply chain network design for conver-

sion of biomass into biofuel in the state of Iowa. Biomass can be harvested
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and collected in every county in the state. The feedstock is then transported

from county centriod to the biorefineries for conversion to biofuel. The biofuel

is transported to the demand areas, which are based on the MSAs in Iowa. It

is assumed that the transportation distance within the county has a negligible

effect on feedstock transportation costs. The goal is to determine the opti-

mal biorefineries locations and capacities with the objective of maximizing the

annual profit while controlling the risk of the biofuel shortages at the MSAs.

In this section, we first explain the data used in this case study. Then, we

analyze and discuss the model output and draw managerial insights for biofuel

supply chain network design.

2.4.1 Data Sources for the Case Study

In the state of Iowa, there are 99 counties which are potential biomass

harvesting locations. Each county is also considered as a candidate location

to build a biorefinery with capacity level of 1000, 1500 or 2000 ton per day

for the conversion to biofuel. The maximum available budget assigned to this

project is $3,000,000,000. We consider 21 MSAs in Iowa as the demand areas.

Biofuel demand at each MSA is estimated as a percent of the state-level gasoline

consumption as provided by Energy Information Administration (EIA). This

percent is based on the ratio of the population within the MSA and the total

population of the state.

The confidence levels to define the CVaR of shortage α and CVaR of profit

β are both assumed to be 20% in this case study. The impacts of different

confidence levels is not within the scope of this study. The upper bound for

biofuel shortage at MSAs is assumed to be H = 200, 000, 000 gallons per year.

Material loss factor e, which accounts for possible losses during loading,

transportation, and unloading, is assumed to be 0.05. Tortuosity factor τ is

considered 1.29, which is multiplied by distances and shows the actual distances
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that must be traveled according to the geographical infrastructure. Based on

the experimental data, the biorefinery process yield of feedstock, Y , is assumed

to be 0.218. The sustainability factors, Si, to be 0.718 at all counties [44].

In this case study, the scenarios are generated based on the average values

of the parameters and their deviation according to the historical records. We

considered 16 scenarios for available feedstock, 3 scenarios for price of gaso-

line, 2 scenarios for feedstock collection and loading costs, and 2 scenarios for

transportation cost. Tables 2.3-2.6 list possible scenarios and their probabilities

considered for each parameter. The combination of these scenarios constructs

192 scenarios in total for this problem.

Table 2.3 Scenarios for available feedstock

Scenario Available feedstock Probability

Scenario 1 A− 8%A 1/16

Scenario 2 A− 7%A 1/16

Scenario 3 A− 6%A 1/16

Scenario 4 A− 5%A 1/16

Scenario 5 A− 4%A 1/16

Scenario 6 A− 3%A 1/16

Scenario 7 A− 2%A 1/16

Scenario 8 A− 1%A 1/16

Scenario 9 A+ 1%A 1/16

Scenario 10 A+ 2%A 1/16

Scenario 11 A+ 3%A 1/16

Scenario 12 A+ 4%A 1/16

Scenario 13 A+ 5%A 1/16

Scenario 14 A+ 6%A 1/16

Scenario 15 A+ 7%A 1/16

Scenario 16 A+ 8%A 1/16

2.4.2 Results Analysis and Discussion

The proposed models aim to determine capital investment decisions on the

location and capacities of the biorefineries, the feedstock transportation and

biofuel delivery decisions. The first-stage decisions have to be made before
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Table 2.4 Scenarios for price of gasoline

Scenario Price of gasoline Probability

Scenario 1 P − 10%P 1/3

Scenario 2 P 1/3

Scenario 3 P + 10%P 1/3

Table 2.5 Scenarios for feedstock collection and loading cost

Scenario Feedstock collection and loading cost Probability

Scenario 1 CSC − 10%CSC 1/2

Scenario 2 CSC + 10%CSC 1/2

the uncertainties are realized, and the second-stage decisions are made after

the realization of the system parameters. In this study, the first-stage deci-

sions include the capital investment decisions (the location and capacities of

the biorefineries). Once the uncertainties are realized, the second-stage deci-

sions are made which include the flows of the biomass from harvesting sites

to biorefineries and the flows of biofuel to demand areas. The uncertainties

considered in this problem consist of feedstock supply, fuel market price, and

logistic costs. Two modeling approaches are adopted in the objective function

formulation: expected value and CVaR of profit. In the first approach, the

objective function is to maximize the expected value of profit. The profit of the

project is an important performance measure to evaluate the effectiveness of

the decision. However, the expected profit approach does not explicitly address

the risk of decision making under the unfavorable events. In order to manage

the system risks, we adopted CVaR of profit as the second approach in the

objective function.

It should be noted that it is of great importance to control the shortage of

demand in the system. One of the challenges in this model is incurring a large

amount of shortage in a single demand MSA. We design a risk measure in the
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Table 2.6 Scenarios for transportation cost

Scenario Transportation cost Probability

Scenario 1 CST − 10%CST 1/2

Scenario 2 CST + 10%CST 1/2

constraints to level the shortage and decrease the probability of larger shortage

occurring in the network. We consider CVaR of the shortage and set an upper

bound on that to control the risk of shortage through demand areas.

In the case study, the state of Iowa is selected due to the data availabil-

ity to demonstrate the effectiveness and applicability of the proposed modeling

framework. There are 99 counties in Iowa with biomass feedstock supply, each

of which is considered as a candidate location for biorefinery. The demand

zones are 21 MSAs located in the state. We implemented the proposed mod-

els with different assumptions in the case study to compare and analyze the

results: the model with objective function of E(Profit) with and without the

CVaR constraints on the shortage, and also the model with objective function

of CVaR(Profit) with and without the CVaR constraints on the shortage.

We implement two proposed models in this case study and compare them to

the models with the same assumption but without considering CVaR constraints

on shortages. Model (A) refers to the model with the objective of E(Profit),

and Model (B) is the model with the objective of CVaR(Profit). These models

are implemented in CPLEX Python API version 12.2.

• In Model (A), the objective is to maximize E(Profit). At first, we imple-

ment this model while there are no control on the shortage of demand.

The version of model (A) without considering the constraints on shortages

is as follows:
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max
∑
j,k,s

Pkswsqjks −
∑
i,j,s

(CSCis + τDijC
ST
s )wsfijs −

∑
j,k,s

(CGC +DjkC
G,T )wsqjks

− PMT(
∑
l,j

CBl δlj)

s.t. Constraints (2.3)− (2.8),

Constraints (2.12),

fijs ≥ 0, ∀i, j ∈ N, ∀s ∈ S,

qjks ≥ 0, ∀k ∈M, ∀s ∈ S,

shks ≥ 0, ∀k ∈M, ∀s ∈ S,

δlj ∈ {0, 1}, ∀j ∈ N, ∀l ∈ L.

Figure 2.5 shows the results from model (A) without considering shortage

constraints. As shown in Figure 2.5, there is a large amount shortage in

one MSA, that is about 528,000 gallons per year. This motivated the use

of a risk measure to control the shortage through MSAs.

• Model A which considers CVaR constraints on the shortage is formulated

as follows:
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Figure 2.5 Biorefineries locations for the model with the objective of E(Profit) (Model A)
without considering CVaR constraints on shortage of demand

max
∑
j,k,s

Pkswsqjks −
∑
i,j,s

(CSCis + τDijC
ST
s )wsfijs −

∑
j,k,s

(CGC +DjkC
G,T )wsqjks

− PMT(
∑
l,j

CBl δlj)

s.t. Constraints (2.3)− (2.12),

fijs ≥ 0, ∀i, j ∈ N, ∀s ∈ S,

qjks ≥ 0, ∀k ∈M, ∀s ∈ S,

shks ≥ 0, ∀k ∈M, ∀s ∈ S,

δlj ∈ {0, 1}, ∀j ∈ N, ∀l ∈ L.

Figure 2.6 shows that when we add CVaR constraints on the shortage to

the model with the objective of E(Profit), the shortages are split in a more

reasonable way, such that the system will not incur that large amount of

shortage in any single MSA. It should be noted that the number of MSAs

with biofuel shortage is increased. In other word, after incorporating the
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CVaR constraints on the shortage, the system shortage is more dispersed

in the system which mitigate the system risks. In addition, after incorpo-

rating constraints (2.9)-(2.11) the total amount of shortage decreases in

this model. This is due to the limit forced on the shortage. In this model,

the expected value of profit decreased about 4% due to the additional

constraints added to the model.

Figure 2.6 Biorefineries locations for the model with the objective of E(Profit) (Model A)
with considering CVaR constraints on shortage of demand

• Model (B) considers the objective of CVaR(Profit). The following for-

mulation refers to this model while there is no control on the biofuel

shortages:
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max ζ − 1

β

∑
s

wsvs

s.t. vs ≥ ζ − Profits, ∀s ∈ S,

vs ≥ 0, ∀s ∈ S,

Profits = Revenues − Costs, ∀s ∈ S,

Revenues =
∑
k,j

Pksqjks, ∀s ∈ S,

Costs =
∑
i,j

(CSCis + τDijC
ST
s )fijs +

∑
j,k

(CGC +DjkC
GT )qjks

+ PMT(
∑
l,j

CBl δlj), ∀s ∈ S,

Constraints (2.3)− (2.8),

Constraints (2.12),

fijs ≥ 0, ∀i, j ∈ N, ∀s ∈ S,

qjks ≥ 0, ∀k ∈M, ∀s ∈ S,

shks ≥ 0, ∀k ∈M, ∀s ∈ S,

δlj ∈ {0, 1}, ∀j ∈ N, ∀l ∈ L.

According to Figure 2.7, the results show that the amounts of shortage

are very large in three MSAs. The total amount of shortages is more than

total shortages in Model (A). The reason is that Model (A) tries to max-

imize the expected profit without the risk control of unfavorable events

in the objective function; however, Model (B) attempts to maximize the

profit in the averse conditions which is associated with the system risks.

• Now we consider Model (B) while enforcing an upper bound on CVaR of

shortage in order to avoid concentrated biofuel shortages for the MSAs.

This model is formulated as:
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Figure 2.7 Biorefineries locations for the model with the objective of CVaR(Profit) (Model
B) without considering CVaR constraints on shortage of demand

max ζ − 1

β

∑
s

wsvs

s.t. vs ≥ ζ − Profits, ∀s ∈ S,

vs ≥ 0, ∀s ∈ S,

Profits = Revenues − Costs, ∀s ∈ S,

Revenues =
∑
k,j

Pksqjks, ∀s ∈ S,

Costs =
∑
i,j

(CSCis + τDijC
ST
s )fijs +

∑
j,k

(CGC +DjkC
GT )qjks

+ PMT(
∑
l,j

CBl δlj), ∀s ∈ S,

Constraints (2.3)− (2.12),

fijs ≥ 0, ∀i, j ∈ N, ∀s ∈ S,

qjks ≥ 0, ∀k ∈M, ∀s ∈ S,

shks ≥ 0, ∀k ∈M, ∀s ∈ S,

δlj ∈ {0, 1}, ∀j ∈ N, ∀l ∈ L.



www.manaraa.com

32

The results from the model with objective of CVaR(Profit) with the CVaR

of shortage constraints is shown in Figure 2.8. When we add the CVaR of

shortage constraints, the amount of shortage in a single MSA is dispersed

which is similar to Model (A). As shown in Figure 2.8, although we have

more MSAs with shortage, we do not have any concentrated shortage in a

single MSA as we had from Model (B) without CVaR constraints. More-

over, the total shortage is less than the same model without considering

CVaR constraints on the shortage.

After applying the constraints on the shortage in this model, the expected

value of profit increased about 8% although the objective value (i.e. CVaR

of profit) decreased due to the additional constraints. However, model B

resulted in smaller profit compared to model A. This is because that model

B tries to improve the profit in the worst cases, while model A aims to

maximize the expected value of profit.

The observations from both models indicate that using CVaR constraints

is a reasonable approach to address the risk of the shortage. It can be

applied in the system in which the risk of occurring large amounts of

shortage in a single MSA is expensive. The reason is that the constraints

of the model make the inevitable shortage to be split through all the MSAs

according to parameter α in the CVaR, and therefore it is not allowed to

have a large amount of shortage in a single MSA. In addition, comparison

of Model A and B, regardless of CVaR constraints, shows that model B

is more appropriate for more conservative decision makers because of the

property of risk-aversion embedded in its objective function. This risk

aversion property can be set according to the decision maker preference

by changing parameter β in the CVaR, in the objective function. As

stated before, studying changes in parameter α and β was not included

in the scope of this study.
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In summary, comparisons between models with two different objective

functions indicates that unsurprisingly the models with the objective func-

tion of E(Profit) provide smaller shortages, whereas the models with the

objective function of CVaR(Profit) yield larger shortages. In addition,

models without the CVaR constraints on the shortage result in a larger

concentrated amount of shortages in the MSAs which is due to that there

is no upper bound on the amount of shortage in a specific demand area.

However, the models with CVaR constraints on the shortage, result in

more MSAs with shortages, but the amount of shortage in each MSA is

reduced. In other words, enforcing an upper bound on the CVaR of the

shortage prevent the occurrence of a large amount of shortage in a single

MSA. This result is as expected, as the CVaR constraints set a limit on

the amount of shortage in a single MSA.

Figure 2.8 Biorefineries locations for the model with the objective of CVaR(Profit) (Model
B) with considering CVaR constraints on shortage of demand
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2.5 Conclusion

Biofuels play an important role in providing clean and secure energy and

promoting economic growth. One of the most important and challenging is-

sues of biofuel production is biofuel supply chain network design. The general

structure of biofuel supply chain consists of biomass production, harvesting,

transportation, conversion and fuel distribution. The biomass is harvested at

the farms and shipped to the biorefineries. At biorefineries, the feedstock is

converted to biofuel and then transported to demand areas. In the research

arena of biofuel supply chain network design, one of the biggest challenges is to

deal with uncertainties along the supply chain.

The goal of this study is to explore the design of a biofuel supply chain

network under uncertainty. We proposed a mathematical programming frame-

work with the approach of two-stage stochastic programming to determine cap-

ital investment decisions on the location and capacities of the biorefineries,

the feedstock transportation and biofuel delivery decisions. The uncertainties

considered in this problem consist of feedstock supply, fuel market price, and

logistic costs. Two modeling approaches are adopted in the objective function

formulation: expected value and CVaR of profit.

To sum up, this study provided a mathematical modeling framework to the

biofuel supply chain network design under uncertainty. Two types of objective

functions: expected value of profit and CVaR of profit were considered. The

first approach focuses on maximize the expected profit where the latter ap-

proach is more on the mitigation of system risk under averse conditions. The

impacts of incorporating the stochastic shortage control are also investigated

by incorporating the CVaR of shortage as a constraint in the model.

We conclude the paper by pointing out two future research directions. Bio-

fuel supply chain network design depends on many parameters and factors.

However, the proposed method only provides a basic framework to study the
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biofuel supply chain under uncertainty. It is suggested to extend these mod-

els to consider additional operational assumptions in future studies. In addi-

tion, the larger the number of scenarios, the more accurate the decisions would

be. Consequently, the computational complexity would substantially increase.

Therefore, exploring more efficient algorithms to solve the problem could be

another direction for future work in this area.
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CHAPTER 3. EVALUATION OF THE IMPACTS OF

POLICIES ON THE BIOFUEL SUPPLY CHAIN DESIGN

UNDER UNCERTAINTY
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Abstract

Biofuel industry has attracted much attention due to its potential to reduce

the dependency on fossil fuels and contribute to the renewable energy. The

Renewable Fuel Standard (RFS) sets policies and mandates to support the

production and consumption of biofuels. However, the uncertainty associated

with these policies and regulations of biofuel production and consumption have

significant impacts on the biofuel supply chain network. This study aims to

determine the optimal design of the biofuel supply chain to maximize annual

profit under the impacts of governmental policies. In this study, two-stage

stochastic programming models are developed in which conditional value at

risk is considered as a risk measure to control the shortage of mandate. A case

study in Iowa is conducted to investigate the effects of different policies and

demonstrate the applicability and efficiency of the models.
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3.1 Introduction

Biofuels are of growing interest for reasons of the environmental and eco-

nomic benefits. Most important advantages of biofuels are its potential to

reduce the dependency on fossil fuel and promote the rural development in

agricultural regions, and sustainability as well as greenhouse gas mitigation

[15]. Biomass has also the advantage to provide solid, liquid and gaseous fuels

that can be stored, transported and utilized, far away from the source [11].

The development of the global biofuel production over the last decade sig-

nificantly relies on the supporting policies. The United States is currently the

largest biofuel producer. Over the past years, different policies have been in-

troduced to support the production and consumption of biofuels in the US [14].

These policies are often necessary to successfully promote biofuel production

since advanced biofuels are often not competitive comparing with fossil fuels.

In the United States, ambitious support policies have recently been adopted

that include explicit measures to encourage usage of second-generation biofuels

[15, 31].

U.S. Environmental Protection Agency (EPA) has proposed rules in a Re-

newable Fuel Standard (RFS) that governs how biofuels are produced and used

in the U.S. The RFS originated with the Energy Policy Act of 2005 and was

expanded and extended by the Energy Independence and Security Act of 2007

(EISA) [31]. Among the various policy instruments, blending mandates are a

common measure to ensure a certain amount of biofuel is consumed, thereby

offering more market certainty to the producer side. The United States is

the only country so far to have adopted a blending mandate for the second-
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generation biofuels. The RFS defines the volume of different biofuels that have

to be blended with conventional fuel between 2006 and 2022 [15].

Currently the major share of biofuel in the United States is ethanol produced

from corn, which has been strongly supported by the existing policies. The total

volume of biofuels mandated in the RFS increases from 15 billion litres in 2006

to 136 billion litres in 2022 as shown in Figure 3.1.

Figure 3.1 Biofuel mandate in the United States Renewable Fuel Standard (Source: [15])

One of the most important aspects of the biofuel production planning is the

design of biomass supply chain networks. In the literature, there are numerous

studies devoted to the supply chain design of biorefineries [16, 42, 28]. It has

been demonstrated that biofuel industry has been challenged by the significant

uncertainties along the biofuel supply chain such as the available feedstock

supply, because it is highly dependent on the weather and can be negatively

affected by pests or diseases [3]. Hence, a large amount of studies in this area

through recent years considered the uncertainties associated with the supply

chain [4, 8, 39, 26, 30, 18, 5, 25].

The government regulations and policies affect the production and use of

biofuel across the biofuel supply chain. Therefore, it is of great importance to

consider the impacts of these policies on the total profit in the biofuel supply
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chain design problem. Hoekman [21] summarized policy and regulatory drivers

for biofuels in the U.S., described the usage trends and projections, and high-

lighted major R&D efforts to promote development and commercialization of

the second generation biofuels. De Gorter and Just [9] claimed that at least

65% of total world fuel consumption is affected by tax credits for biofuels. De

Gorter et al. [10] evaluated the economic effects of an import tariff with or

without mandates and/or tax credits. It is shown that tax credit and mandate

result in significant changes in the price of biofuel.

The goal of this study is to investigate the impacts of biofuel policies on the

biofuel supply chain models under uncertainty. One of the important policies

we consider in this study is renewable fuel standard mandate. The Renewable

Identification Number (RIN) system was developed by the U.S. Environmen-

tal Protection Agency (EPA) to ensure the compliance with RFS mandates.

Each year, obligated parties are required to meet their prorated shares of the

RFS mandates by accumulating RINs, either through fuel blending or by pur-

chasing RINs from others. Another biofuel policy is Tax credit which makes

blenders more willing to blend biofuels. Pass-through quantifies how much each

stakeholder gets when a subsidy or tax credit is provided. The impact of the

uncertainty regarding the pass-through play an important role in biofuel indus-

try. The effects of pass-through on the biofuel supply chain models are also

investigated in this study.

The mathematical modeling framework considered in this study aims to

design a biorefinery supply chain considering the uncertainties in the fuel mar-

ket price, feedstock supply, and logistic costs including the transportation and

operation costs. Two mixed integer programming models with the two-stage

stochastic programming approach were applied to address the uncertainties.

The first-stage makes the capital investment decisions including the locations

and capacities of the biorefineries, and once the uncertainties of available feed-
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stock is resolved the second-stage determines the biomass and gasoline flows.

The objective function is to maximize the annual profit for biofuel producers.

Two different types of objectives were considered: expected value of profit,

E(Profit), and conditional value at risk of profit, CVaR(Profit). The proposed

models also illustrate the impact of incorporating CVaR in constraints on sat-

isfying demand and controlling the amount of shortage of mandate in demand

zones.

The rest of the paper is organized as follows: in Section 3.2, we discuss the

problem statement for biofuel supply chain, and then, the stochastic program-

ming models updated for this problem under biofuel policies are reviewed. A

case study in the state of Iowa are presented in Section 3.3 in order to compare

the results and highlight the impacts of the policies. Finally, we conclude the

paper in Section 3.4 with the summary of findings.

3.2 Problem Statement and Model Formulation

The biofuel supply chain network consists of biomass production, harvesting,

transportation, conversion and fuel distribution. The goal of this study is to

investigate the impacts of policies in the biofuel supply chain network design.

The base of the proposed models in this paper is the mathematical modeling

framework presented in [25]. We consider the optimization models to determine

the best locations of the biorefineries with the two different objective functions

on maximizing the profit. They also specify the amount of biomass transported

from harvesting sites to biorefineries as well as the amount of gasoline shipped

to the demand nodes. In this work, we focus on the impacts of the biofuel

policies on the network.

Important parameters involved in the problem consist of the biomass feed-

stock harvesting sites, potential biorefineries locations along with the capacity

levels, and demand zones with the amount of associated mandate. There are
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also important factors such as percentage of mandate enacted, percentage of

pass-through, sustainability, etc. Uncertain parameters include the costs re-

lated to the biomass feedstock, and also feedstock availability at each harvesting

site with the potential fluctuation of yield due to the seasonality and weather

conditions.

We made several assumptions in the model formulation. The uncertainties

in the models are defined with a set of uncertain parameters described by dis-

crete distributions. Scenarios are generated based on the combination of the

uncertain parameters. The uncertain parameters consist of the feedstock sup-

ply and the logistic costs including transportation, collection, and loading costs.

Credit and cost from RINs and pass-through are also considered in the model.

The biorefineries with three possible capacity level and associated investment

costs can be built in a candidate location. We assume that each biorefinery can

be provided by more than one feedstock harvesting site, and each demand can

be satisfied by more than one biorefinery. In addition, each harvesting site can

serve more than one biorefinery and also each biorefinery can supply more than

one demand zone.

The goal of these models are to design a biofuel supply chain network to

maximize the profit and minimize the costs while satisfy the biofuel mandates

and controlling the biofuel shortage for the mandates. These models determine

the locations and capacities of biorefineries, and the quantities of biomass feed-

stock shipped between harvesting sites and biorefineries, as well as the quantities

of biofuel transported between biorefineries and demand zones. The objective

function of the models is to maximize the total profit for all the refineries.

The revenue can be obtained from selling biofuel, pass-through and credit form

RINs, and the total cost consists of collecting, transporting and operational,

and shortage costs.

In this problem, locations for biorefineries are assumed to be centroid of
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the counties and demand nodes are based on Metropolitan Statistical Areas

(MSAs). Table 3.1 describes the notations used in the model.

3.2.1 Constraints in the Model

In this model, the following two sets of constraints are related to the first-

stage decisions, that is the selection of biorefinery locations, and the others are

dedicated to the second-stage decisions which specify the amount of feedstock

and biofuel flows in the system.

A set of binary variables, δlj , is defined to determine whether a biorefinery

with capacity level of l is located in a candidate location j. The following

constraint is used to ensure that the cost of building biorefieries does not exceed

the available budget B:

∑
j

∑
l

CBl δlj ≤ B. (3.1)

The next constraints shows that at most biorefinery can be built in each

candidate location:

∑
l

δlj ≤ 1, ∀j ∈ N. (3.2)

We assumed that the biomass supply is uncertain with a known distribution.

Scenarios are designed based on the distribution and represented by S. Given

the set of counties, N , that produce biomass feedstock, each county i ∈ N

has Ais tons per year of corn stover in scenario s available. Given Si as the

sustainability factor of the corn stover, each county can provide at most (1 −

Si)Ais tons of corn stover per year in scenario s. The flow of the feedstock from

biorefinery i to the biorefinery facility j in scenario s is denoted by fijs. The

following constraints ensure that the total quantity of feedstock transported
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Table 3.1 Notations
Scenarios

ws Probability that scenario s happens;

S Set of scenarios;

Feedstock Parameters

N Set of counties producing biomass feedstock;

Ais Available feedstock at county i in scenario s;

Si Sustainability factor for county i

CSCis Variable feedstock collection and loading cost at county i in scenario s;

Transportation Parameters

e Material loss factor;

Dij Great circle distance from county i to county j;

τ Tortuosity factor;

CSTs Variable feedstock transportation cost in scenario s;

Biorefinery Parameters

L Set of biorefinery levels;

Ulj Biorefinery capacity with level l for location j;

Y Biorefinery fuel process yield;

CGC Unit conversion cost per gallon of biofuel produced;

B Available budget;

CBl Cost of opening a biorefinery with level l;

MSA and Gasoline mandate

M Set of MSAs considered;

Gk Total gasoline mandate for MSA k;

CGT Variable gasoline transportation cost;

Pks Price of gasoline at MSA k for scenario s;

shks Shortage of gasoline mandated at MSA k in scenario s;

spks Surplus of gasoline mandated at MSA k in scenario s;

H Upper bound for CVaR of shortage in each MSA;

λ Percentage of gasoline mandate;

γ Percentage of pass-through;

X Tax credit for every gallon of biofuel;

RIN Value of RIN;

Optimization Variables

δlj Binary variable that determines if a biorefinery with capacity l is located in county j;

fijs Flow of biomass feedstock from county i to county j for refining in scenario s;

qjks Finished gasoline flow from county j to MSA k in scenario s;

η, rs Variables defined to formulate CVaR of the shortage.
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from county i does not exceed the amount of feedstock available at the county

in each scenario:

∑
j

fijs ≤ (1− Si)Ais, ∀i ∈ N, ∀s ∈ S. (3.3)

Each county, j ∈ N , can be a candidate for a biorefinery facility with the

capacity of Uj . The amount of feedstock that can be processed to biofuel at a

facility is less than or equal to the specified capacity, which is ensured by

(1− ej)
∑
i

fijs ≤
∑
l

Uljδlj , ∀j ∈ N, ∀s ∈ S. (3.4)

The biofuel produced in the biorefineries will be shipped to the MSAs. Deci-

sion variable qjks represents the quantity of biofuel shipped from the biorefiery

j to the MSA k under the scenario s. Variable shks represents the shortage of

biofuel mandate, while spks represents the surplus of biofuel mandate in MSA k

and scenario s. The following constraints shows the relation between quantity

of biofuel, shortage, surplus and biofule mandate:

∑
j

qjks + shks − spks = λsGk, ∀k ∈M, ∀s ∈ S. (3.5)

We assumed that all the biomass shipped to a biorefinery are converted to

biofuel, where Y is a conversion factor associated to the production yield. This

is represented by

(1− ej)
∑
i

fijsY =
∑
k

qjks, ∀j ∈ N, ∀s ∈ S. (3.6)

One of the features of the proposed models is the adoption of Conditional

Value at Risk (CVaR) [6, 34, 35] to incorporate risk-aversion concept into an
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optimization model. The definition of Value at Risk (VaR) and CVaR are

illustrated below.

The VaR1−α of a random variable of X is the lowest value of t such that,

with probability α, the loss will not be more than t, whereas the CVaR1−α is

the conditional expectation of loss above that amount t [35], that is

VaR1−α(X) = inf {t : Pr(X ≤ t) ≥ 1− α} ,

CVaR1−α(X) = E[X|X ≥ V aR1−α].

Another representation of CVaR(1−α) for a discrete distribution is

CVaR1−α(X) = inf
t

{
t+

1

α
E [(X − t)+]

}
(3.7)

where (a)+ = max {0, a} [13].

We applied CVaR as a risk measure in order to control the amount of

shortage of biofuel mandates. Parameter H is defined as a limit on the CVaR

of shortage of the mandates. Constraints (3.8)-(3.10) enforce a limit on CVaR

of shortage associated with α-quantile. In other words, constraints (3.8)-(3.10)

are the linearization of CVaR1−α(sh) ≤ H by introducing auxiliary variables rs

and η:

η +
1

α

∑
s

wsrs ≤ H, (3.8)

rs ≥ shks − η, ∀k ∈M, ∀s ∈ S, (3.9)

rs ≥ 0, ∀s ∈ S. (3.10)

In addition, a set of valid inequalities derived from constraints (2.3) are

included in the model, as formulated in the following:
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∑
j

δlj ≤ bB/CBl c, ∀l ∈ L. (3.11)

3.2.2 Objective Function

In these models the objective is to maximize the annual profit which is

defined as the totsl revenue subtracted by the total cost. The total revenue

consist of revenue from selling the biofuel, pass-through revenue, as well as

credits from selling excess RINs, and different kinds of costs considered in the

biofuel supply chain network are collection and loading cost, transportation

cost, conversion cost, shortage cost and capital cost.

Three different sources of revenues are considered in the models: revenue

from selling the biofuel, pass-through revenue, and credits from selling excess

RINs. The expected price biofuel sold at in MSA k is denoted by Pks. Therefore,

the revenue obtained by selling the product is
∑

j,k,s Pkwsqjks. The revenue

from pass-trough is
∑

j,k,sXγwsqjks in which X represents the tax credit for

every gallon of biofuel, and γ is the percentage of pass-through. The credit

obtained from surplus production of biofuel is calculated by
∑

k,swsspksRIN .

There are also different types of costs incurred in the biofuel supply chain

network including collection and loading cost, transportation cost, conversion

cost, capital cost and shortage cost. Unit cost of collection and loading of feed-

stock shipped and delivered to the biorefiery facilities is denoted by CSCis . Unit

transportation cost for biomass feedstock is specified by CSTs . Assuming the

distance between county i and j as Dij , the total expected cost of loading, col-

lection, and transportation of biomass feedstock is
∑

s(C
SC
is + τDijC

ST
s )wsfijs

in which τ is a tortuosity factor that accounts for the actual distance that must

be traveled due to the available geography and transportation infrastructure.

Another cost involved in our models is conversion cost. Unit conversion cost

to produce a gallon of biofuel at the biorefinery is specified by CGC . The total
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conversion cost is thus
∑

j,k,sC
GCwsqjks. Biofuel is shipped to the MSA by

pipelines at a unit cost of CGT , so the total biofuel transportation cost equals∑
j,k,sDjkC

GTwsqjks. To define the cost of the biofuel shortage from mandate,

a penalty which equals to the RIN value is considered for every gallon of short-

age. Total capital cost to build the biorefineries is
∑

l,j C
B
l δlj . We adopt the

amortized capital investment concept. Therefore, the annual payments for a

period of t = 30 years with interest rate of ir = 8% is:

PMT(Investment) = Investment

(
ir(1 + ir)t

(1 + ir)t − 1

)
We considered two approaches in the objective function to maximize the

total profit. The first is to maximize the expected value of the total profit

which is referred to as E(Profit) in this paper. The model with objective of

E(Profit) is formulated as follows:

max
∑
j,k,s

Pkswsqjks +
∑
j,k,s

Xγwsqjks −
∑
i,j,s

(CSCis + τDijC
ST
s )wsfijs

−
∑
j,k,s

(CGC +DjkC
G,T )wsqjks − PMT(

∑
l,j

CBl δlj)−
∑
k,s

wsshksRIN +
∑
k,s

wsspksRIN

s.t. Constraints (3.1)− (3.10),

fijs ≥ 0, ∀i, j ∈ N, ∀s ∈ S,

qjks ≥ 0, ∀k ∈M, ∀s ∈ S,

shks ≥ 0, ∀k ∈M, ∀s ∈ S,

spks ≥ 0, ∀k ∈M, ∀s ∈ S,

δlj ∈ {0, 1}, ∀j ∈ N, ∀l ∈ L.

Using the objective of E(Profit) does not explicitly address the risks asso-

ciated with profit. Therefore, in the second approach, we adopt the CVaR of
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profit for the objective function. For a distribution of the profit, the definition

of VaR and CVaR is considered for the tail on the left side of a probability

density function.

The VaR1−β of a random variable of X is the highest value of t such that,

with probability β, the profit will not be less than t, whereas the CVaR1−β is

the conditional expectation of profit below that amount t, as follows

VaR1−β(X) = sup {t : Pr(X ≥ t) ≥ 1− β} ,

CVaR1−β(X) = E[X|X ≤ V aR1−β].

For a discrete distribution, another representation of CVaR(1−β) is

CVaR1−β(X) = sup
t

{
t− 1

β
E [(t−X)+]

}
. (3.12)

The aim of the second approach is to maximize the CVaR of the total profit

which is referred to as CVaR(Profit) in this paper. The notation related to the

new assumptions are included in Table 3.2. Auxiliary variables ζ and vs are

introduced to linearize CVaR of the profit according to (3.12).

Table 3.2 Updated parameters for the stochastic model with objective of CVaR(Profit)

Profits Total profit for scenario s;

Revenues Revenue for scenario s;

Costs Total cost for scenario s;

ζ, vs Variables defined to formulate CVaR of the profit.

The model with the objective of CVaR(Profit) associated with β-percentile

is presented in the following formulation.
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max ζ − 1

β

∑
s

wsvs

s.t. vs ≥ ζ − Profits, ∀s ∈ S,

vs ≥ 0, ∀s ∈ S,

Profits = Revenues − Costs, ∀s ∈ S,

Revenues =
∑
k,j

Pksqjks +
∑
j,k,s

Xγwsqjks +
∑
k,s

wsspksRIN, ∀s ∈ S,

Costs =
∑
i,j

(CSCis + τDijC
ST
s )fijs +

∑
j,k

(CGC +DjkC
GT )qjks

+ PMT(
∑
l,j

CBl δlj) +
∑
k,s

wsShksRIN, ∀s ∈ S,

Constraints (3.1)− (3.10),

fijs ≥ 0, ∀i, j ∈ N, ∀s ∈ S,

qjks ≥ 0, ∀k ∈M, ∀s ∈ S,

shks ≥ 0, ∀k ∈M, ∀s ∈ S,

δlj ∈ {0, 1}, ∀j ∈ N, ∀l ∈ L.

3.3 Case Study

In this section a case study is applied for the proposed models to investi-

gate the impact of different policies. The goal of the stochastic mixed integer

linear models is to design a biorefinery supply chain with the consideration of

uncertainties. The problem is formulated in two mathematical models with two

different objective functions: E(Profit) and CVaR(Profit). The models consider

the uncertainties in the fuel market price, feedstock supply, and logistic costs,

while applying biofuel policies. These models apply the CVaR of shortage as a

tool to control the shortage from mandate biofuel in the system.
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In biofuel supply chain system in the state of Iowa, biomass can be harvested

and collected in every county in the state. Then the feedstock is transported

from the counties to the biorefineries for conversion to biofuel. The biofuel is

transported to the demand areas or MSAs in Iowa. It is assumed that the

transportation distance within the county has a negligible effect on feedstock

transportation costs. The models is aimed to determine the optimal biore-

fineries locations and capacities with the objective of maximizing the annual

profit while controlling the risk of the biofuel shortages at the MSAs, as weel

as considering the policies in the system.

In the rest of this section, we first explain the data used in the case study,

and then we analyze and discuss the impacts of the policies on the output.

3.3.1 Data Sources for the Case Study

The potential biomass harvesting locations in Iowa are 99 counties in this

state. We consider each county as a candidate location to build a biorefinery

with capacity level of 1000, 1500 or 2000 ton per day for the conversion to bio-

fuel. The maximum available budget assigned to this project is $5,000,000,000.

There are 21 MSAs in Iowa which are considered as the demand areas. Bio-

fuel mandate at each MSA is estimated as a percent of the state-level gasoline

consumption as provided by Energy Information Administration (EIA). This

percent is based on the ratio of the population within the MSA and the total

population of the state. Figure 3.2 shows the map of the state illustrating the

average of available biomass at each county, as well as the levels of gasoline

consumption at each MSA.

We assume the confidence levels to define the CVaR of shortage α and CVaR

of profit β are both 20%. The impacts of these confidence levels are important

in the result of the decision, however, the study of that is not within the scope

of our discussion. We also assume that the upper bound for biofuel shortage at
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Figure 3.2 Available biomass and gasoline demand in Iowa

MSAs is 800,000,000 gallons per year.

Tortuosity factor τ is considered 1.29, which is multiplied by distances and

shows the actual distances that must be traveled according to the geographical

infrastructure. Material loss factor e, which accounts for possible losses during

loading, transportation, and unloading, is assumed to be 0.05. Based on the

experimental data, the biorefinery process yield of feedstock, Y , is assumed to

be 0.218. The sustainability factors, Si, to be 0.718 at all counties [44].

We considered 3 cases for the gasoline mandate supposed to be satisfied

by biofuel. These scenarios include 10%, 20% and 30% of the total gasoline

mandate in each MSA (λ). We also considered 3 cases for percentages of pass-

through (γ) including 0%, 50% and 100%. In addition, we assume that tax

credit for every gallon of biofuel (X) is $1.1, and RIN is $2.

Scenarios for the problem are considered based on the combination of the

uncertain parameters. We generated the scenarios using the average values of

the parameters and their deviation according to the historical records. For

this problem, we considered 16 scenarios for available feedstock, 3 scenarios

for price of gasoline, 2 scenarios for feedstock collection and loading costs, and

2 scenarios for transportation cost. Possible scenarios and their probabilities
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generated for each parameter are listed in Tables 3.3-3.6. The combination of

these scenarios constructs 192 scenarios in total for this problem.

Table 3.3 Scenarios for available feedstock

Scenario Available feedstock Probability

Scenario 1 A− 8%A 1/16

Scenario 2 A− 7%A 1/16

Scenario 3 A− 6%A 1/16

Scenario 4 A− 5%A 1/16

Scenario 5 A− 4%A 1/16

Scenario 6 A− 3%A 1/16

Scenario 7 A− 2%A 1/16

Scenario 8 A− 1%A 1/16

Scenario 9 A+ 1%A 1/16

Scenario 10 A+ 2%A 1/16

Scenario 11 A+ 3%A 1/16

Scenario 12 A+ 4%A 1/16

Scenario 13 A+ 5%A 1/16

Scenario 14 A+ 6%A 1/16

Scenario 15 A+ 7%A 1/16

Scenario 16 A+ 8%A 1/16

Table 3.4 Scenarios for price of gasoline

Scenario Price of gasoline Probability

Scenario 1 P − 10%P 1/3

Scenario 2 P 1/3

Scenario 3 P + 10%P 1/3

3.3.2 Results Analysis and Discussion

We solve each of the two optimization models proposed in this paper with

nine different assumptions on gasoline mandate in each MSA (λ) and percent-

ages of pass-through (γ). These assumptions are the combination of three cases

for (λ) and three cases for (γ). We consider three cases for the gasoline mandate

supposed to be satisfied by biofuel including 10%, 20% and 30% of the total
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Table 3.5 Scenarios for feedstock collection and loading cost

Scenario Feedstock collection and loading cost Probability

Scenario 1 CSC − 10%CSC 1/2

Scenario 2 CSC + 10%CSC 1/2

Table 3.6 Scenarios for transportation cost

Scenario Transportation cost Probability

Scenario 1 CST − 10%CST 1/2

Scenario 2 CST + 10%CST 1/2

gasoline mandate in each MSA (λ). We also consider 3 cases for percentages

of pass-through (γ) including 0%, 50% and 100%. The results of the model for

the combination of these cases are shown in Table 3.7.

Table 3.7 provides the results of the model with the objective of expected

value of the profit. As we can see, it is obvious that as the percentage of

the mandate increases, the total profit decreases, because there are more strict

mandate should be satisfied in the system. It shows the necessity of more

encouraging policies when the mandate percentage is larger. In addition, as the

percentage of pass-through goes up, the total profit increases in all cases.

By increasing the mandate, there will be more shortage for mandate, so

shortage cost will increase. On the other hand, the profit from credit gained

by surplus of biofuel production will increase significantly when the percentage

of mandate increases from 10% to 20% when the percentage of pass-through is

0% or 50%. But when the percentage of pass-through is 100%, the profit from

credit gained by surplus of biofuel production decrease from 10% to 20%. In all

values of γ, when the percentage of pass-through is 100%, the credit gained by

surplus of biofuel production is larger compared to other percentages of pass-

through. In cases with λ of 10% and 20%, it is noticeable that when the pass-

through increased from 50% to 100%, not all the revenue from pass-through
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Table 3.7 Results of the model with the objective of expected value of the profit

λ
γ 10% 20% 30%

Total profit

0%

453 M 329 M 134 M
Revenue of selling biofuel 4,547 M 4,422 M 4,232 M
Revenue of Pass-through 0 0 0
Conversion and gas transportation Cost 3,028 M 3,022 M 3,019 M
Biomass collection and transportation Cost 643 M 643 M 637 M
Investment cost 423 M 423 M 429 M
Shortage cost 7 M 32 M 33 M
Credit 7 M 26 M 20 M
Total profit

50%

455 M 331 M 136 M
Revenue of selling biofuel 4,547 M 4,422 M 4,232 M
Revenue of Pass-through 2 M 2 M 2 M
Conversion and gas transportation Cost 3,028 M 3,022 M 3,019 M
Biomass collection and transportation Cost 643 M 643 M 637 M
Investment cost 423 M 423 M 429 M
Shortage cost 7 M 33 M 33 M
Credit 7 M 26 M 20 M
Total profit

100%

456 M 332 M 138 M
Revenue of selling biofuel 4,547 M 4,422 M 4,232 M
Revenue of Pass-through 4 M 4 M 4 M
Conversion and gas transportation Cost 3,028 M 3,022 M 3,019 M
Biomass collection and transportation Cost 643 M 643 M 637 M
Investment cost 423 M 423 M 429 M
Shortage cost 7 M 11 M 33 M
Credit 7 M 4 M 20 M

is reflected on the profit. The revenue from the pass-through is increased by

2M and the profit is only increased by 1M. In addition, when the percentage of

mandate increased, there is a remarkable increasing in the credit from selling

RINs, however, the shortage costs increase as well.

Table 3.8 summarizes the results of the model with the objective of CVaR of

the profit. In general, the total profit from this model is less than the total profit

from the model with the objective of expected value. It is obviously because

of the fact that the CVaR is more conservative rather than expected Value. In

this model, the revenue from selling biofuel and pass-through is less than the

first model. The other observation is the difference of credit and shortage cost

in these two models. When the percentage of mandate is 10%, the credit from
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Table 3.8 Results of the model with the objective of CVaR of the profit

λ
γ 10% 20% 30%

Total profit

0%

260 M 168 M 73 M
Revenue of selling biofuel 2,235 M 2,438 M 3,328 M
Revenue of Pass-through 0 0 0
Conversion and gas transportation Cost 1,486 M 1,701 M 2,422 M
Biomass collection and transportation Cost 273 M 318 M 469 M
Investment cost 212 M 242 M 350 M
Shortage cost 33 M 34 M 34 M
Credit 30 M 25 M 20 M
Total profit

50%

261 M 169 M 74 M
Revenue of selling biofuel 2,235 M 2,438 M 3,328 M
Revenue of Pass-through 1 M 1 M 1 M
Conversion and gas transportation Cost 1,486 M 1,701 M 2,422 M
Biomass collection and transportation Cost 273 M 318 M 469 M
Investment cost 212 M 242 M 350 M
Shortage cost 33 M 34 M 34 M
Credit 30 M 25 M 20 M
Total profit

100%

262 M 176 M 76 M
Revenue of selling biofuel 2235 M 2493 M 3328 M
Revenue of Pass-through 2 M 2 M 3 M
Conversion and gas transportation Cost 1486 M 1737 M 2422 M
Biomass collection and transportation Cost 273 M 327 M 469 M
Investment cost 212 M 246 M 350 M
Shortage cost 33 M 34 M 34 M
Credit 30 M 25 M 20 M

selling RINs and also shortage cost are remarkably increasing compared to the

previous model.

Generally, in both models, as the percentage of pass-through increases, the

total profit increases slightly, but as the percentage of mandate increases, the

total profit decreases considerably.

3.4 Conclusion

To reduce the dependence on fossil fuels and to address climate change

concerns, U.S. policymakers have employed a variety of policies to support

the production and consumption of biofuels. Biofuel industry has been highly

affected by these policies. This study has attempted to analyze the impacts
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of RFS mandates and pass-through on the biofuel supply chain models under

uncertain sources of feedstock availability and logistic costs. In order to achieve

this goal, we studied the models formulated with two different approaches in

the objective functions. First approach is maximizing expected value of profit

and the second approach is maximizing the CVaR of the profit. We also applied

CVaR in the constraints of the models to control the shortage from mandates.

The assessment undertaken in this study shows that considerable increase

in pass-through has a slight increase in the total profit. The increase in the

mandate of biofuel has a remarkable impact on decreasing the total profit. The

comparison between two models with different objective functions shows that

the revenue from pass-through in the model with the objective of expected

value is more than the revenue from pass-through in the model with the objec-

tive of CVaR. However, the credit from RINs in the model with the objective

of expected value is less than the same credit in the model with the objec-

tive of CVaR. In general, regardless of the policies, the total profit decreased

considerably in the model with the objective of CVaR of the profit.
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CHAPTER 4. GENERAL CONCLUSION

4.1 Conclusion

Biofuels play an important role in providing clean and secure energy and

promoting the economic growth. One of the most important and challenging

issues for biofuel production is the biofuel supply chain network design. The

general structure of the biofuel supply chain consists of biomass production,

harvesting, transportation, conversion and fuel distribution. The biomass is

harvested at the farms and shipped to the biorefineries. At the biorefineries,

the feedstock is converted to biofuel and then transported to the demand areas.

In biofuel supply chain network design, one of the biggest challenges is to deal

with uncertainties along the supply chain.

The motivation in this study is to design the biofuel supply chain network

under uncertainty and also explore the impacts of the different policies on the

supply chain network. We proposed a mathematical programming framework

with the approach of two-stage stochastic programming to determine the capi-

tal investment decisions on the locations and capacities of the biorefineries, the

feedstock transportation and biofuel delivery decisions. Before the uncertainties

are realized, the first-stage decisions have to be made, and the second-stage de-

cisions are made after the realization of the system parameters. The first-stage

decisions include the capital investment decisions (the locations and capacities

of the biorefineries). Once the uncertainties are realized, the second-stage deci-

sions are made which include the flows of the biomass from the harvesting sites

to biorefineries and the flows of the biofuel to the demand areas.
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The uncertainties considered in this problem consist of feedstock supply, fuel

market price, and logistic costs. Two modeling approaches are adopted in the

objective function formulation: expected value and CVaR of profit. In the first

approach, the objective function is to maximize the expected value of profit.

The profit of the project is an important performance measure to evaluate the

effectiveness of the decision. However, the expected profit approach does not

explicitly address the risk of decision making under the unfavorable events. In

order to manage the system risks, we adopted CVaR of profit as the second

approach in the objective function.

It should be noted that it is of great importance to control the shortage of

demand in the system. One of the challenges in this model is incurring a large

amount of shortage in a single demand MSA. We design a risk measure in the

constraints to level the shortage and decrease the probability of larger shortage

occurring in the network. We consider CVaR of the shortage and set an upper

bound on that to control the risk of shortage through demand areas.

In the case study, the state of Iowa is selected due to the data availabil-

ity to demonstrate the effectiveness and applicability of the proposed modeling

framework. There are 99 counties in Iowa with biomass feedstock supply, each

of which is considered as a candidate location for biorefinery. The demand

zones are 21 MSAs located in the state. We implemented the proposed mod-

els with different assumptions in the case study to compare and analyze the

results: the model with objective function of E(Profit) with and without the

CVaR constraints on the shortage, and also the model with objective function

of CVaR(Profit) with and without the CVaR constraints on the shortage.

Comparisons between models with two different objective functions indi-

cates that unsurprisingly the models with objective function of E(Profit) pro-

vide smaller shortages, whereas the models with objective function of CVaR(Profit)

yield larger shortages. In addition, models without the CVaR constraints on
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the shortage result in a larger concentrated amount of shortages in the MSAs

which is due to that there is no upper bound on the amount of shortage in

a specific demand area. However, the models with CVaR constraints on the

shortage, result in more MSAs with shortages, but the amount of shortage in

each MSA is reduced. In other words, enforcing an upper bound on the CVaR

of the shortage prevent the occurrence of a large amount of shortage in a single

MSA. This result is as expected, as the CVaR constraints set a limit on the

amount of shortage in a single MSA.

Biofuel policies and mandates legislated by the government have significant

impacts on the biofuel industry. We attempt to study the impacts of policies

such as RFS and tax credit on the biofuel supply chain models under uncertain

sources. To achieve this goal, the two-stage stochastic modeling framework with

two approaches in the objective functions were employed. In addition, CVaR is

applied in the constraints of the models to control the shortage from mandates.

These models are applied for the case study in Iowa. The comparison between

two models with different objective functions shows that as the revenue from

pass-through in the model with the objective of expected value is more than the

revenue from pass-through in the model with the objective of CVaR. However,

the credit form RINS in the model with the objective of expected value is less

than the same credit in the model with the objective of CVaR. In general,

regardless of the policies, the total profit decreased considerably in the model

with the objective of CVaR of the profit.

In summary, this study aims to provide a mathematical modeling frame-

work for the biofuel supply chain network design under uncertainty. Two types

of objective functions have been considered: expected value of profit and CVaR

of profit. The first approach focuses on maximize the expected profit where the

latter approach is more on the mitigation of system risk under averse conditions.

The impacts of incorporating the stochastic shortage control are also investi-
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gated by incorporating the CVaR of shortage as a constraint in the model.

Moreover, we explored the impacts of biofuel policies and mandates on the

proposed supply chain models.

4.2 Future Study

Biofuel supply chain network design depends on many parameters and fac-

tors. However, the proposed method only provides a basic framework to study

the biofuel supply chain under uncertainty. It is suggested to extend these

models to consider additional operational assumptions in future studies. In

addition, the larger the number of scenarios, the more accurate the decisions

would be. Consequently, the computational complexity would substantially

increase. Therefore, exploring more efficient algorithms to solve the problem

could be another direction for future work in this area.



www.manaraa.com

61

Bibliography

[1] Akgul, O., Shah, N., and Papageorgiou, L. G. (2012a). Economic opti-

misation of a uk advanced biofuel supply chain. Biomass and Bioenergy,

41:57–72.

[2] Akgul, O., Shah, N., and Papageorgiou, L. G. (2012b). An optimisa-

tion framework for a hybrid first/second generation bioethanol supply chain.

Computer and Chemical Engineering, 42:101–114.

[3] An, H., Wilhelm, W. E., and Searcy, S. W. (2011). Biofuel and petroleum-

based fuel supply chain research: A literature review. Biomass and Bioenergy,

35:3763–3774.

[4] Awudu, I. and Zhang, J. (2012). Uncertainties and sustainability concepts

in biofuel supply chain management: A review. Renewable and Sustainable

Energy Reviews, 16:1359–1368.

[5] Awudu, I. and Zhang, J. (2013). Stochastic production planning for a biofuel

supply chain under demand and price uncertainties. Applied Energy, 103:189–

196.

[6] Bertsimas, D., Lauprete, G. J., and Samarov, A. (2004). Shortfall as a risk

measure: Properties, optimization and applications. Journal of Economic

Dynamics & Control, 27:1353–1381.

[7] Bowling, I. M., Ponce-Ortega, J. M., and El-Halwagi, M. M. (2011). Facil-



www.manaraa.com

62

ity location and supply chain optimization for a biorefinery. Industrial and

Engineering Chemistry, 50:6276–6286.

[8] Dal-Mas, M., Giarola, S., Zamboni, A., and Bezzo, F. (2011). Strategic

design and investment capacity planning of the ethanol supply chain under

price uncertainty. Biomass and Bioenergy, 35:2059–2071.

[9] de Gorter, H. and Just, D. R. (2006). The economics of the u.s. ethanol

import tariff with a blend mandate and tax credit. Journal of Agricultural

& Food Industrial Organization, 8:Article 6.

[10] de Gorter, H., Just, D. R., and Tan, Q. (2009). The welfare economics

of a biofuel tax credit and the interaction effects with price contingent farm

subsidies. Journal of Agricultural Economics, 38:65–77.

[11] Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and

global biofuel projections. Energy Conversion and Management, 49:2016–

2116.

[12] Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy

Conversion and Management, 50:14–34.
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